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Abstract

With the increasing presence, scale, and complexity of distributed systems, resource failures are be-
coming an important and practical topic of computer science research. While numerous failure models
and failure-aware algorithms exist, their comparison has been hampered by the lack of public failure
data sets and data processing tools. To facilitate the design, validation, and comparison of fault-tolerant
models and algorithms, we have created the Failure Trace Archive (FTA)—an online, public repository
of failure traces collected from diverse parallel and distributed systems. In this work, we first describe
the design of the archive, in particular of the standard FTA data format, and the design of a toolbox that
facilitates automated analysis of trace data sets. We also discuss the use of the FTA for various cur-
rent and future purposes. Second, after applying the toolbox to over fifteen failure traces collected from
distributed systems used in various application domains (e.g., HPC, Internet operation, and various
online applications), we present a comparative analysis of failures in various distributed systems. Our
analysis presents various statistical insights and typical statistical modeling results for the availability
of individual resources in various distributed systems. The analysis results underline the need for public
availability of trace data from different distributed systems. Last, we show how different interpretations
of the meaning of failure data can result in different conclusions for failure modeling and job schedul-
ing in distributed systems. Our results for different interpretations show evidence that there may be a
need for further revisiting existing failure-aware algorithms, when applied for general rather than for
domain-specific distributed systems.

1. Introduction

As a consequence of increasing presence, complexity, and scale of distributed systems, resource fail-
ures have become inevitable. Failures can have serious consequences for applications running on these
systems: performance degradation and loss of useful work for scientific applications, and corruption of
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data, violation of service-level agreements, and even large losses of customers and revenue [1]. Although
many models and algorithms exist for analyzing, predicting, and resolving failures [2, 3, 4, 5, 6, 7, 8],
these models and algorithms are validated using failure traces of a single or a very limited number of sys-
tems. Moreover, for the few studies that use failure traces collected from multiple systems, the data sets
are rarely publicly available. Thus, the field of failure models and fault-tolerant algorithms is severely
fragmented, and the comparison and cross-validation of proposed models is difficult if not impossible.
To remedy this situation, we have created, and we present in this work the Failure Trace Archive (FTA),
which comprises publicly available traces of many different types of parallel and distributed systems,
along with public tools for their analysis.

There are numerous causes that can lead to failures in real-world distributed systems, broadly derived
from increasing system functionality, complexity, and scale. When system functionality increases, the
immaturity of the software stack, and various security threats and attacks, can lead to unmaskable fail-
ures. When the complexity of the system grows, system misconfiguration and even scheduled downtime
to update the system become regular sources of failure. When systems are expanded, system overload
and even natural disasters affecting one part of the system may trigger cascading failures that can bring
the entire system down. For example, between 2008 and 2010, both Facebook and Twitter experienced
repeatedly downtime when overloaded [9, 10]. Overloads were also the cause of downtime for the Mi-
crosoft email service Hotmail, at the end of 2010 [11]. Even Goodreads, a popular social network for
book readers, became unusable on Aug 20, 2012, due to overloads.

We create the FTA as a community archive, an approach that has been recognized as useful for sharing
data and that has been employed by several communities in the computing domain. For example, the
parallel computing community has built the Parallel Workloads Archive [12], the grid computing com-
munity has created the Grid Workloads Archive [13], etc. Efforts such as the Repository of Availability
Traces [14], the Computer Failure Data Repository [15], and the Desktop Grid Failure Traces [4] have
led to making failure-related data public, but did not establish the premise of a community archive for
distributed computing systems. In particular, they did not build a common format for storing failure-
related data, did not provide a working toolbox for uniformly processing and interpreting failure-related
data, and did not publish a sufficient number of data sets to encompass a large variety and number of
distributed systems. In contrast to these early efforts, our main contributions are as follows:

1. We survey the presence and impact of failures in real-world distributed systems (Section 2).
2. We design a public failure trace archive, creating a standard format for failure traces, a toolbox

for uniformly processing and interpreting failure-related data, and a simulator that facilitates com-
parative trace analysis (Section 3). Currently, the archive includes 20 traces across 8 classes of
distributed systems. We also present in this section our experience with numerous use cases of the
FTA and our predictions regarding the applicability of the FTA for future distributed systems.

3. Using the toolbox, we uniformly analyze and model two failure characteristics across several types
of distributed systems (Section 4).

4. We show that differences in the interpretation of failure-related data can change significantly the
analysis and modeling results based on derived from the data (Section 5).

5. Using the simulator, we evaluate the effect of differences in the interpretation of failure traces on
the job scheduling in two distributed systems (Section 6).

We have introduced the FTA in a preliminary conference paper [16], which we expand upon in this
work with more context, new traces, more in-depth analysis, and new simulation results. In particular, we
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add more examples of failures in real-world distributed systems and several new traces in the archive,
both in the survey in Section 2 and in the significantly increased amount of traces currently shared
through the FTA. We also provide an overview of the use of the FTA in different aspects including
design, testing, and procurement of distributed systems. Last, we provide a new simulator to enable
researchers to study the impact of failures in their proposed fault tolerance models and algorithms, along
with a case study to show the effect of trace interpretation on job scheduling in distributed systems.

The remainder of the work is organized as follows. In Section 2, we recall the terminology concerning
failures in distributed systems and we survey many failures that have occurred in operational systems
over the years. We describe the Failure Trace Archive structure, and past and future use, in Section 3. In
Section 4, we present a statistical analysis of several types of distributed systems, based on a selection
of data sets from the FTA. We then present the difference of interpretation for different data sets in
Section 5. We evaluate the effect of trace interpretation on the job scheduling in two different distributed
systems using trace-based simulations in Section 6. We describe related work in Section 7. Finally, we
summarize our findings and present future directions in Section 8.

2. Background on Failures in Large-Scale Systems

We introduce in this section the terminology on failures used throughout this work. We also provide
more motivation for our work on failures, through a selective survey of the presence and impact of
failures in large-scale distributed systems.

2.1. Terminology

Throughout this work, we follow the basic concepts and definitions associated with system depend-
ability as summarized by Avizienis et al. [17]. We also recommend the topical survey of Salfner et
al. [18]. The basic threats to reliability are failures, errors, and faults occurring in a system. A failure
is an event that makes a system fail to operate according to its specifications. A failure is observed as a
deviation from the correct state of the system. We call the continuous period of a service outage due to
a failure an unavailability interval. A continuous period of availability is called an availability interval.
An error is a part of the system state that may lead to a failure. Some errors may not be visible from
outside of the system, that is, they may not reach the external state of the system and thus cause failures;
such errors are said to be dormant. Errors that do cause failures are said to be active. The root cause of
an error is a fault.

2.2. Failures in Real-World Distributed Systems

Although we expect distributed systems to be highly available and reliable, the reality is that unmask-
able failures occur often and with important consequences. In this section we survey chronologically
the presence and impact of failures in large-scale distributed systems. This survey focuses on a selection
of exemplary failures affecting a large number of people or large-scale services based on distributed
systems. Moreover, the survey is an important motivation for our work and has guided the selection of
traces investigated in this work (see Section 3.4).

Our selective survey, albeit not comprehensive, covers in fifteen examples a variety of application
domains in which failures occurring in distributed systems cause significant service issues. Our exam-
ples cover High-Performance Computing (HPC), Internet-based file-sharing and content distribution,
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Internet-based online gaming, general IT infrastructure, computer science research, social networking,
online retail, and online stock trading. We also cover numerous causes that can lead to failures in real-
world distributed systems: scheduled downtime, system overload, system misconfiguration, immaturity
of the software stack, security threats and attacks, natural disasters, etc.

The production multi-cluster grid Grid3 [19] (now the Open Science Grid) was experiencing a failure
rate of about 30% in 2003 [19, 20]. One of the European ICT infrastructures servicing hundreds of sci-
entists, Grid’5000, suffered between 2005 and 2007 from cascading and catastrophic failures involving
hundreds of computers [21]. Among the causes, immaturity of the software stack is a reasonable expla-
nation that is supported by later evidence into the quality of grid middleware over the years [22]. Another
possible cause is the abuse of the scheduling system by redundant submissions of batch jobs [23].

Overloads affect even peer-to-peer systems, although they are by design scalable. For example, since
2003, the BitTorrent file-sharing system [24] can experience poor performance during severe overloads
(flashcrowds). Intuitively, because in peer-to-peer systems the users provide additional service capacity
while being online, a (long) flashcrowd can lead to a beneficial accumulation of (bandwidth) capacity
rather than to poor performance. However, even through 2009 and 2010 the performance of BitTorrent
users during flashcrowds could be up to an order of magnitude lower than the performance observed in
normal conditions [25].

The operators of World of Warcraft, a massively multiplayer online gaming service, have scheduled
since 2003 periods of downtime of several hours weekly, for updating and managing their world-wide
pool of over 200 clusters. Assuming an average of 4 hours of downtime, the maximum availability
of World of Warcraft was and still is under 97%, which affects negatively their players. Scheduled
downtime is currently the de-facto standard for the online gaming industry.

Natural disasters struck USA and Italy in 2003 [26, 27], causing severe blackouts and thus failure of
the IT infrastructure. It is doubtful that redundant capacity and operational protocols could have masked
failures of this magnitude.

The Akamai content distribution services were unavailable in May 2004 for over an hour, due to large-
scale denial-of-service attacks [28]. Several major websites, including eBay, Yahoo!, and Google, which
were relying on Akamai’s distributed infrastructure for content distribution, also suffered downtime.

For shared infrstructure, a large fraction (about 20%) of the PlanetLab resources were unavailable
to researchers several times during 2004 [29]. Moreover, the performance of the system could drop
significantly during overload periods.

Between 2008 and 2010, both Facebook and Twitter experienced repeatedly downtime when over-
loaded [9, 10]. Overloads were also the cause of downtime for the Microsoft email service Hotmail, at
the end of 2010 [11]. Even the Goodreads social network for book readers became overloaded on Aug
20, 2012.

Network misconfiguration led to downtime of several Amazon services in April 2011 [30]. Both
BATS (March 2012) and Nasdaq (May 2012, during the Facebook IPO launch) failed due to algorithmic
problems but also misconfiguration to respond to request overload [31]. The duration of the matchmak-
ing algorithm used for trading exceeded the maximal duration of validity of requests, which allowed the
distributed requests to be updated and ultimately triggered a loop in the process.

The cluster architecture of CCP’s EVE Online, an online massively multiplayer online game, has
crashed repeatedly between 2011 and 2013 [32]. Although both the hardware and the distributed mid-
dleware, and even the application design were upgraded periodically, the most important failures con-
tinued to be caused by player flashcrowds. As a consequence, many players lost assets that took years
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to develop.
A natural disaster that struck India in 2012 emphasizes the difficulty of masking large-scale (corre-

lated) failures. As a consequence of lack of rain, the Indian power grid collapsed [33]. Pre-established
fail-overs to different parts of the system failed in cascade, due to overload. Over 300 million people
were left without access to the power and IT infrastructure for days or more.

3. Overview of the Failure Trace Archive

The Failure Trace Archive (FTA) can be used in many ways. First, the FTA allows the comparison
and cross-validation of a fault-tolerant model or algorithm across identical trace data sets. Second, it
allows the evaluation of the generality of a model or algorithm across different types of resources (in
terms of reliability or user base, for example). Third, it allows for the evaluation of the generality of a
failure trace, i.e., to determine whether measurements are biased to a particular platform or middleware.
Fourth, it allows for the determination of which trace data set is most interesting or applicable for a given
algorithm or model. Fifth, it allows for the analysis of the evolution of availability in different systems
across long timescales. Sixth, it allows for the integration of failure models with other types of models
(such as workloads). Seventh, it facilitates the incorporation of traces with a common format into fault
simulators or emulators for model or algorithm evaluation.

3.1. Archive Format

In our experience, the majority of time in measurement and modeling studies is spent in parsing and
interpreting the measurements. To accelerate this processing and analysis for others, we have parsed and
interpreted 20 diverse distributed systems in a standard format. Here we describe the rationale of the
format.

The majority of our collection of traces record times of failures for resources, and contain an alternat-
ing time series of availability and unavailability intervals. As such, our format is resource-centric (versus
job-centric or user-centric) with respect to failures of individual nodes or components of nodes, such as
memory, CPU, or hard disks. We believe the format is also applicable to failures of services deployed on
top of resources. However, our format does not explicitly describe higher-level failures, such as job fail-
ures, though potentially the FTA format could be extended for this type of failure or perhaps combined
with the Grid Workload Archive format [13]. Measuring and understanding the relationship between
lower-level failures (for example, of nodes or components) to higher-level failures (for example, jobs) is
an area for future research.

The trace format is organized hierarchically as follows: Platform → Node → Component → Event
Trace. Figure 1 depicts the structure of the FTA, where boxes represent database tables. We summarize
the meaning of each table below. Table names are shown in bold.

• A platform contains a set of nodes. Examples of a platform include desktop PC’s at Microsoft, or
nodes in the LANL1 clusters.

• A node contains a set of components, which is a software module or hardware resource of the

1Los Alamos National Laboratory
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platform

node

component

event_trace

creator

node_perf

event_state

component_type 
codes

event_type codes

event_end reason 
codes

Figure 1. Overview of the FTA structure.

node. Each node can have several components (e.g., CPU speed, available memory, client avail-
ability), each of which has a corresponding trace.

• The node_perf describes the node performance, as measured through benchmarks, for example.

• A component describes attributes of a software module or hardware resource of a node.

• A creator is the person responsible for the trace data set. This table stores details about data
copyright, and about projects and published material that use the data.

• An event_trace is the trace of an event, with all of corresponding timing information (e.g., start
and end times).

• The event_state is the state corresponding to an event_trace. For example, for CPU availability,
the event_state could be the idleness of the CPU. For host availability, it could be the monitoring
information associated with the event.

In addition, we have codes that correspond to different types of components (for example, memory,
CPU, hard disk), events (for example, availability or unavailability), and event reason codes (for exam-
ple, disk crash and CPU overheating).

The best test of a format is its application to real data sets for different types of systems with different
types of failures measured in different ways. We applied this format to nine systems ranging from
desktops on the Internet to supercomputing clusters. The types of failures included host, CPU, and even
service failures. These failures were measured using a variety of methods, such as periodic probing,
event notification, load measurement, and even human observation. Given that all of these data sets
could be presented in this format with ease, we believe the format is good first step towards a standard.
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Figure 2. FTA Toolbox Design.

To anticipate future extensions of the format, we have several generic tables with double and string field
that can contain additional new information should it arise.

3.2. FTA Toolbox

We implemented a FTA toolbox to facilitate the comparative analysis of failure traces (see Figure 2).
The toolbox is implemented in Matlab, and uses several open-source Matlab packages, such as the Mysql
and DataTable packages.

The toolbox takes as input four functions for initializing, querying, processing, and finalizing the data
analysis. The initialization and query stages allow one to extract the necessary data from traces located
in a MySQL database into Matlab in-memory data structures. By contrast to loading entire data sets into
memory from large files, this method allows one to extract into memory only the data that is needed for
processing.

Initialization and querying is separated from processing to allow expensive initialization queries to be
conducted only once, after which any amount of processing can be done. Also, this separation allows
the same initialization and queries to be used for many different processing functions. This facilitates
code reuse.

The results of initializing and querying are then passed to the processing function. This function is run
across each of those results. The processing output is then fed into the finalize function, which produces
tables in latex, HTML, text, and wiki formats using the DataTable module. All graphs and tables in
Sections 4 and 5 were produced using the FTA toolbox.

3.3. FTA Simulator

The GridSim is a framework which allows modeling and simulation of entities in parallel and dis-
tributed computing systems for performance evaluation purposes [34]. Although the processing nodes
(i.e., a machine) within a resource in GridSim can be heterogeneous in terms of processing capability
and configuration, there is no support to simulate resources in the presence of failures. In order to have
this feature, we developed a set of packages for GridSim simulator to generate a list of failures based
on the FTA format. To do this, we equipped GridSim with a failure injection mechanism that is able to
simulate failure events collected in the FTA data sets in various distributed systems. It basically reads the
event_trace tabbed file and generates a list of events that show the availability/unavailability patterns
for each machine for a given resource (i.e., a resource may have more than one machine). The list of
resources also is taken from the node tabbed file. In the case of resource failure, the target node will
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Trace Type # of Nodes Target Component Period Year
lanl05 SMP, HPC Clusters 4,750 host 9 years 1996-2005
g5k06 Grid 1,288 host 1.5 years 2005-2006
microsoft99 Desktop 51,663 host 35 days 1999
websites02 Web servers 131 host 8 months 2001-2002
pl05 P2P 692 host 1.5 year 2004-2005
ldns04 DNS servers 62,201 host 2 weeks 2004
overnet03 P2P 3,000 host 2 weeks 2003
nd07cpu Desktop Grid 700 CPU, host 6 months 2007
skype06 P2P 2,081 host 1 month 2005
sat09 Desktop Grid 226,208 CPU 1.5 years 2007-2009
pnnl07 HPC Cluster 980 host, network 4 years 2003-2007
ucb94 Desktop Grid 80 CPU 46 days 1994
sdsc03 Desktop Grid 275 CPU 1 month 2003
lri05 Desktop Grid 40 CPU 1 month 2005
deug05 Desktop Grid 40 CPU 1 month 2005
cae06 Grid 686 host 35 days 2006
cs06 Grid 725 host 35 days 2006
glow06 Grid 715 host 33 days 2006
teragrid06 Grid 1001 host 8 months 2006-2007

Table 1. Summary of the data sets in the Failure Trace Archive.

stop working for the duration of unavailability interval and start working again for the given availability
interval.

The failures are simulated in the node level (i.e., the same level as GridSim simulator) where we
provided some fault-tolerance algorithms such as checkpointing mechanisms to analyze the effect of
failures on job scheduling. In Section 6, we use this simulator with a perfect checkpointing mechanism
to study the impact of the resource failures on job scheduling.

3.4. FTA Traces

The FTA currently has 20 formatted data sets, which are listed in Table 1, and 6 others currently with
raw data only. Overall, we study in this work traces coming from distributed systems used in various
application domains: HPC, Internet operation, Internet-based file-sharing, various other online applica-
tions. The data represent 8 types of distributed systems, including multi-cluster grids, HPC clusters, and
large-scale P2P systems. The FTA traces represent a collection that covers significantly more application
domains and system types, in comparison with the related archives described in Section 7; in particular,
we have more than doubled the number of traces shared through the FTA in 2010 [16]. In the remainder
of this section, we describe each formatted data set and the measurement method used for its collection.
We further study in this work, in Sections 5 and Section 6, how the interpretation of the meaning of data
collected with these methods can result in different conclusions for failure modeling and job scheduling
in distributed systems, respectively.

lanl05 is a data set of 22 HPC systems at Los Alamos National Laboratory. It contains a record
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for every failure that happened in these systems as well as the root cause [3]. The g5k06 data set
is a trace of a computational grid platform in France (i.e., Grid’5000) which consists of 9 sites, 15
clusters and more than 2,500 processors [5]. The data was collected by periodic inspection and logging
of each node’s status through the grid middleware called OAR. The microsoft99 data set contains log
files of 51,663 desktops PCs at Microsoft Corporation where their reachability was determined with a
ping every hour [2]. The data set of websites02 was derived from probe-based measurements where
a single machine at Carnegie Mellon sent a HTTP file request to web servers periodically every 10
minutes [35]. pl05 consists of trace data measured between all pairs of PlanetLab nodes using pings
every 15 minutes [36]. The ldns04 data set includes the probe results of 62,201 local DNS servers where
the inter-arrival time of the probes followed an exponential distribution with mean of one hour [37].

The overnet03 data set is a probe-based measurement conducted over the Overnet peer-to-peer file-
sharing system [38]. In this data set, the availability of 3,000 hosts was checked every 20 minutes. The
nd07cpu data set contains traces recorded by Condor from the desktop systems at the University of
Notre Dame [6]. The data set is comprised of time-stamped CPU load and idle times of each system,
recorded every 16 minutes. The skype06 data set is collected by application-level pings of nodes in the
Skype superpeer network, every 30 minutes [39]. sat09 is the data set of the SETI@Home project where
the BOINC client [40] is instrumented to collect CPU availability traces from more than 200,000 hosts
over the Internet [41]. We define CPU availability to be a binary value indicating whether the CPU was
free or not. The traces record the time when CPU starts to be free and stops.

The pnnl07 is traces of hardware failures on the HPC system with 980 nodes including dual Itanium-2
processors at Pacific Northwest National Laboratory (PNNL) [42]. For each hardware failure, the data
set includes a time-stamp, a hardware identifier, the component that failed, a description of the failure,
and the repair action taken. ucb94 is the data set of the a workstation cluster used by UC Berkeley CAD
group where information about CPU, memory, disk, keyboard and mouse activity were logged every
two seconds [43]. A host was considered available in this measurement, if the average CPU usage over
the past minute was less than 5%, and there had been no keyboard/mouse activity during that time.

The sdsc04 data set consists of availability traces of 275 hosts at the San Diego Supercomputer Cen-
ter (SDSC) while running Entropia’s DCGrid software [44]. lri05 and deug05 are traces from desktop
PC’s at the University of Paris South, and ran the open source XtremWeb [45] desktop grid software [4].
They only difference between two data sets is the type of users where the lri05 was a cluster used
by a computer science research group for running parallel applications and benchmarks, while deug05
consisted of desktop PC’s in classrooms used by first-year undergraduates. The cae06, cs06, and glow06
data sets [46] have been collected by the Condor Team from the test (the former two) and production
(the latter) Condor pools at University of Wisconsin-Madison; the latter Condor pool was part of an in-
ternational Grid system working for the CMS experiment at CERN. Finally, the teragrid06 data set [46]
includes failure traces collected from the NCSA Linux cluster, which was ranked as the best site of the
TeraGrid system by the NSF Cyberinfrastructure User Survey 2005. They have crawled with a sampling
interval of 5 minutes the online status page of the NCSA Linux cluster, containing general, job, and node
use and availability information.

3.5. Discussion: On the Current and Future Use of the FTA

In this section we discuss current and future use of the FTA. For current use, we discuss impact on
research, practice, and education. For future use, we discuss the extension of FTA with data collected
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from several upcoming, non-traditional distributed systems.

Research impact. To assess the research impact of the FTA, we have followed the citation record of our
FTA article [16] since the publication of our first report about the FTA at the CCGrid conference, in May
2010. Overall, the FTA article has attracted over 60 citations, as reported by Google Scholar in March,
2013. Google Scholar indicates that the FTA has been used for work published in conferences such as
IEEE IPDPS, ACM HPDC, and ACM SC; and in journals such as CCPE, IEEE Internet Computing,
and JPDC. Thus, we conclude that the FTA has been useful for a large part of the communities focusing
on theoretical and applied research in distributed systems. For the future, we would like to promote the
use of FTA by two other communities, related to systems reliability and distributed systems (USENIX-
related).

Practical impact: use in system design and operation. The content of the FTA restates that many large-
scale distributed systems experience failures. System designers and administrators can use FTA data
to design, validate, and evaluate new algorithms, methods, and practical deployments. FTA data and
tools are particularly relevant for work in topics such as backup and checkpointing, replication, predic-
tion for proactive and reactive resource management [47], scheduling in general, security [48], storage
management [49], and data availability and durability in general.

FTA traces have been used for work on checkpointing for parallel jobs [50], where the failure of nodes
needs to be proactively compensated through periodic saving of application state and other checkpoint-
ing strategies. Using FTA traces, the authors perform extensive simulations of various checkpointing
strategies.

FTA data can be used for various scheduling problems [51, 48, 52]. Scheduling in systems with
volatile resource, such as volunteer computing environments, may not be able to use the same approaches
developed for more stable systems. For example, a study of scheduling strategies for volunteer comput-
ing uses FTA traces to show that “the commonly used BOINC scheduling algorithms are unable to
enforce fairness and project isolation” [51]. They also show that lack of coordination in the exploitation
of shared resources can be inefficient and socially unfair.

Practical impact: use in system testing and procurement. System testing and procurement of large-scale
distributed systems, which is an area that can still see many improvement in both theory and practice,
can use FTA data directly for testing and dimensioning in general, including in tools for fault injection,
testing with varying node availability, simulation of what-if scenarios, etc. Moreover, both system testing
and procurement can use failure models derived from FTA data.

Among the simulators that use FTA data [53, 54], SimGrid was extended to support volunteer com-
puting platforms [53]. The main challenge encountered by the designers of SimGrid is the scale of the
simulated environments; they showed through experiments using FTA traces that their proposed scala-
bility mechanisms perform well in practice.

The FTA traces have been instrumental in the development of various failure models [46, 55, 56]. In a
recent study [46], we analyzed and model the time-varying behavior of failures in large-scale distributed
systems. We used nineteen failure traces from the FTA, concerning production large-scale distributed
systems, including grids, P2P systems, DNS servers, web servers, and desktop grids. We showed that
time-correlated failures occur often and have an important impact on the performance and availability
of such systems. We also proposed a statistical model that characterizes the duration of peaks, the peak
inter-arrival time, the inter-arrival time of failures during the peaks, and the duration of failures during
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peaks. We showed that, for the systems we studied, our model characterizes over 50% and up to 95% of
the downtime of these systems.

Practical impact: use in education. The lack of professionals who can work in distributed systems has
become increasingly visible in the US and EU markets in the recent years, coupled with the growth in the
number and size of data centers. As a consequence, (large-scale) distributed systems play a prominent
role in the updated Computer Science Curricula 2013 (CS2013, Strawman draft) published by the ACM
and IEEE Computer Society at the beginning of 2012 [57]. We expect most of the universities with strong
ties to the ACM and IEEE to adopt this new curriculum guidelines and, already, many universities have
already started having undergraduate and graduate-level courses in large-scale distributed systems [58,
59, 60]. Thus, we believe the FTA can become an important resource for computer science curricula in
academic education.

We target with the FTA university-level courses that teach the use of grids and Clouds, large-scale
distributed systems, performance analysis through simulation, and performance modeling. The reports,
the tools, and the data included in the FTA can greatly help the instructors of such courses. Specifically,
the data in the repository can be used for in-class demonstrations and student assignments, the detailed
analysis can be used to illustrate concepts related to system operation, etc. The tools may be used to
build new analysis and simulation tools.

We have used material from the FTA in several undergraduate and graduate-level courses at TU Delft.
For example, we have used FTA analysis results in the first-year B.Sc. course Computer Organization2,
to exemplify the concept of system reliability. Similarly, we have used FTA analysis results in the
M.Sc. course Cloud Computing3, to explain the concept of cascading failures and to exemplify potential
problems induced by multi-tenancy.

Future use of the FTA: support for upcoming distributed systems. Although the direction in which dis-
tributed systems is difficult to predict, our study [61] of the past decade’s trends in scientific workloads
has identified trends such as a shortening of job durations and loose coupling of jobs. These trends, cou-
pled with the rise to prominence of the “data deluge” (Big Data) [62], indicate several possible directions
in which distributed systems may evolve.

First, systems may become increasingly parallel, which means incorporating in distributed systems
highly-parallel GPUs such as NVIDIA’s Tesla, heterogeneous multi-cores such as Intel MIC, and even
generic architectures such as the FPGA/MISD machines from Maxeller. Moreover, distributed systems
may even start to incorporate hybrid processing elements, such as the CPU and GPU devices in Nvidia’s
Project Denver. The current FTA format could accommodate data collected from such architectures
through its component and component_type elements. Important challenges here will be making the
node_perf information meaningful across multiple classes of machines and facilitating the grouping of
various members of the same resource family.

Second, systems operated by small companies or systems that exhibit high workload variation may
increasingly rely on external resources, perhaps acquired from cloud computing infrastructure such as
Amazon EC2. Such hybrid systems will be heterogeneous and distributed in nature, and may raise new
challenges in recording failure information about the Internet and about the acquired machines. The

2TU Delft course TI1400 Computer Organization.
3TU Delft course IN4392 Cloud Computing.
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Trace Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.
lanl05 1779.99 1208.09 280.28 3462.33 1.95 1593.37 34480.23 0.02 3.09 14.29 19874
g5k06 32.41 18.41 7.09 94.24 2.91 24.07 10157.73 0.00 15.06 695.83 294318
microsoft99 67.01 40.39 10.00 138.47 2.07 55.00 840.00 1.00 3.40 15.80 526078
websites02 11.85 5.17 0.83 40.10 3.38 5.17 1196.55 0.00 9.02 135.89 47843
pl05 159.48 71.42 1.71 475.61 2.98 35.60 6051.49 0.00 4.91 34.26 24928
ldns04 140.93 125.79 28.29 193.39 1.37 213.47 559.27 0.00 1.24 2.97 223596
overnet03 2.29 1.48 1.33 4.63 2.02 1.00 120.11 0.00 8.03 113.34 33443
nd07cpu 13.73 5.46 1.07 60.05 4.37 7.11 3783.57 0.00 25.49 1228.74 134176
skype06 16.27 10.12 5.11 34.57 2.12 11.87 465.95 0.00 4.81 34.38 29217

Table 2. Statistics of availability intervals for different data sets (values in hours.)

current FTA format could accommodate machine heterogeneity, through its component and compo-
nent_type elements. However, information about these machines may only be available through a view
from the user, where, similarly to the view provided by desktop grids, details outside the shared re-
sources (e.g., of the physical machine) are hidden from the user. Although obtaining failure information
from such distributed systems raises important challenges, early solutions already exist, for example as
test suites [63] or as large-scale observations [64].

Third, a resource of future interest will be storage. We have not yet included traces collected from tra-
ditional multi-tier distributed storage systems into the FTA, although the overnet03 traces represent
systems with single tier, heterogeneous, P2P, file-based storage. Extending the FTA format for the latter
is a topic of future work.

4. Analysis of FTA Traces

In this section, we analyze the first nine data sets of FTA in two steps4. First, we inspect the basic
statistics for two failure characteristics, duration of availability and unavailability intervals. Second, we
fit distributions for modeling failures in terms of probability distributions of availability and unavailabil-
ity intervals. Third, we present a qualitative comparison of failure characteristics in distributed systems.

4.1. Basic Statistics

We focus in this section on various statistics for the availability and unavailability intervals: the mean
and the trimmed mean (defined as the mean value after discarding the top 10% of the values), the
median, the standard deviation (std), the coefficient of variation (CV), the interquartile range (IQR), the
maximum and minimum, the skewness (the third moment), the kurtosis (the fourth moment), and the
number of intervals. Tables 2 and 3 summarize the results obtained for each dataset for availability and
unavailability intervals, respectively. These tables contain three types of descriptive statistics. Statistics
of the first type (mean, median, and trimmed mean) reflect the central tendency of the distributions;
statistics of the second type (CV, IQR, minimum, maximum) measure the spread of the distribution; and
statistics of the third type (skewness, kurtosis) reflect the shape of the distribution.

4These nine data sets cover all the distributed system types currently represented in the FTA.
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Trace Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.
lanl05 5.88 1.67 0.97 78.39 13.32 1.98 5325.70 0.00 43.96 2289.91 23451
g5k06 7.41 0.94 0.05 60.24 8.13 0.19 6314.95 0.00 26.26 1237.26 294145
microsoft99 16.49 9.15 2.00 46.50 2.82 14.00 840.00 1.00 8.52 105.12 493687
websites02 1.18 0.49 0.17 22.92 19.46 0.34 3311.51 0.00 111.03 14311.32 47714
pl05 49.61 12.86 0.50 269.90 5.44 6.36 9329.47 0.00 15.10 340.33 24236
ldns04 8.61 5.47 2.28 20.68 2.40 7.82 533.22 0.00 8.62 123.06 161395
overnet03 11.98 4.00 0.33 36.82 3.07 1.67 167.83 0.00 3.66 15.11 35449
nd07cpu 4.25 0.47 0.27 62.83 14.77 0.36 3616.70 0.04 33.72 1307.29 134026
skype06 14.31 9.45 6.16 30.23 2.11 14.30 596.03 0.02 6.26 62.72 27136

Table 3. Statistics of the unavailability intervals for different data sets (values in hours.)

The results reveal that the ratios between the mean and the median for the availability and unavail-
ability intervals are quite different across the data sets. This indicates that single-parameter distributions
might not be a good option for a failure model. This can be confirmed by the skewness and kurtosis
values that indicate that both availability and unavailability intervals are well modeled by distributions
that are right-skewed and long-tailed. Moreover, the results indicate that unavailability distributions are
more highly right-skewed and have longer tails than the availability distributions.

The unavailability intervals are more variable than the availability intervals, as indicated by the higher
values of the CV and the lower values of the trimmed mean (the cut 10% of the data accounts for
much of the difference between the mean and the trimmed mean). This further emphasizes the need
for distributions with more degrees of freedom, e.g., phase-type distributions, to model unavailability
intervals for these data sets.

4.2. Toward Failure Models

In this section, we refer to the distribution of availability and unavailability intervals as the failure
model. The cumulative distribution functions (CDFs) of the availability and unavailability intervals are
plotted in Figures 3(a) and 3(c), respectively. We find that the data sets differ significantly in scale and
shape of these distributions.

(a) Availability
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Figure 3. The cumulative distribution functions of the availability and unavailability intervals.
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Trace Exponential Weibull Pareto Log-Normal Gamma
lanl05 0.005 0.025 0.416 0.571 0.002 0.010 0.475 0.611 0.345 0.488
g5k06 0.012 0.038 0.472 0.597 0.003 0.018 0.394 0.564 0.409 0.507

microsoft99 0.005 0.084 0.294 0.546 0.000 0.049 0.371 0.611 0.198 0.418
websites02 0.000 0.006 0.079 0.354 0.000 0.027 0.188 0.401 0.055 0.182

pl05 0.000 0.000 0.080 0.245 0.002 0.016 0.168 0.321 0.043 0.131
ldns04 0.009 0.042 0.316 0.510 0.002 0.010 0.357 0.527 0.287 0.472

overnet03 0.045 0.460 0.068 0.532 0.000 0.013 0.160 0.660 0.052 0.481
nd07cpu 0.001 0.011 0.348 0.526 0.002 0.063 0.408 0.596 0.167 0.284
skype06 0.048 0.105 0.373 0.493 0.000 0.002 0.452 0.581 0.257 0.375

Table 4. P-values resulting from KS and AD tests for availability. A gray box denotes p-value above
significance level of 0.05.

Trace Exponential Weibull Pareto Log-Normal Gamma
lanl05 0.000 0.004 0.196 0.346 0.000 0.001 0.481 0.607 0.042 0.095
g5k06 0.000 0.000 0.008 0.073 0.000 0.000 0.037 0.144 0.003 0.022

microsoft99 0.004 0.180 0.048 0.529 0.000 0.376 0.076 0.611 0.052 0.368
websites02 0.000 0.023 0.001 0.150 0.000 0.002 0.005 0.209 0.003 0.090

pl05 0.000 0.000 0.035 0.178 0.000 0.004 0.081 0.274 0.019 0.079
ldns04 0.035 0.112 0.404 0.538 0.000 0.001 0.464 0.607 0.277 0.411

overnet03 0.000 0.040 0.003 0.305 0.000 0.204 0.011 0.389 0.005 0.118
nd07cpu 0.000 0.004 0.028 0.219 0.000 0.031 0.126 0.559 0.003 0.032
skype06 0.071 0.191 0.288 0.478 0.002 0.015 0.182 0.449 0.267 0.408

Table 5. P-values resulting from KS and AD tests for unavailability. A gray box denotes p-value above
significance level of 0.05.
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Availability intervals Unavailability intervals
Trace Exp(µ) Wbl(k, λ) LogN(µ, σ) Gam(k, λ) Exp(µ) Wbl(k, λ) LogN(µ, σ) Gam(k, λ)
lanl05 1779.99 0.48 816.60 5.56 2.39 0.35 5102.71 5.92 0.58 2.18 0.05 1.42 0.38 15.44
g5k06 32.41 0.48 14.37 1.51 2.42 0.34 94.35 7.41 0.35 0.47 -2.00 2.20 0.19 39.92

microsoft99 67.01 0.55 35.30 2.62 1.84 0.41 162.19 16.49 0.60 9.34 1.42 1.54 0.46 35.52
websites02 11.85 0.46 3.68 0.23 2.02 0.31 38.67 1.18 0.65 0.61 -1.12 1.13 0.50 2.37

pl05 159.49 0.33 19.35 1.44 2.86 0.20 788.03 49.61 0.36 5.59 0.40 2.45 0.21 237.65
ldns04 141.06 0.51 79.30 3.25 2.33 0.39 362.43 8.61 0.63 5.62 0.91 1.64 0.51 16.87

overnet03 2.29 0.85 2.04 0.19 0.98 0.91 2.53 12.00 0.44 2.98 0.08 1.80 0.29 41.64
nd07cpu 13.73 0.45 4.16 0.30 2.20 0.30 46.16 4.25 0.51 0.74 -1.02 1.27 0.28 15.07
skype06 16.27 0.64 10.86 1.60 1.57 0.53 30.79 14.31 0.63 9.48 1.40 1.73 0.50 28.53

Table 6. Parameters of distributions for availability (left) and unavailability (right). Statistical terms:
mean: µ, std: σ, shape: k, scale: λ.

We have conducted parameter fitting for various distributions, namely the Exponential, Weibull,
Pareto, Log-normal, and Gamma distributions. The fitting was done using maximum likelihood esti-
mation (MLE). We adopted two goodness of fit (GOF) tests, the Kolmogorov-Smirnov (KS) and the
Anderson-Darling (AD) tests, to evaluate the distribution fits. The results of both tests are reported in
terms of the p-values for availability and unavailability distributions in Tables 4 and 5, respectively. The
p-value we report is the average of 1000 p-values, each of which was computed by randomly selecting
30 samples from a data set—this is a standard method [65, 41] for computing p-values when the number
of samples is high.

The exponential function seems to be far from the underlying distributions. However, it could be
a good fit for the availability distributions of microsoft99, overnet03 and skype06 and the
unavailability distributions of microsoft99, ldns04, and skype06 as well. So, the skype06
data set with the exponential failure model is a good candidate to evaluate Markov models for predic-
tion of host availability/unavailability. However, the resolution of the measurement method could have
caused the exponential distribution to be a good fit. For example, the overnet03, skype06, and
microsoft99 systems were measured using probes with periods of 20 minutes, 30 minutes, and 1
hour, respectively. As a consequence, there are no (un)availability intervals taking less than this length,
and in the CDFs shown in Figure 3, there are spikes at those period lengths. Further investigation of the
usability of exponential distributions for failure characteristics in distributed systems is needed (and en-
abled by the FTA); the implications of the findings can affect a large number of theoretical and practical
studies.

Our results reveal that for the availability/unavailability distributions heavy-tailed distributions do
not give a good fit—the p-values for Pareto are very low. The only exceptions are the distributions of
unavailability of overnet03 and microsoft99, which are close to being heavy-tailed. It is worth
noting that the AD test is more sensitive to the tail than the KS test. This explains the difference between
p-values of the two GOF tests, especially when we have a heavy-tailed data set.

For all data sets, the Gamma distribution is a good candidate for the failure model as the p-values
are relatively high. This distribution function is very flexible and can also be adopted for analytical
work based on Markov models [66]. Additionally, the results of the GOF tests show that the best fit
for all data sets are either the Weibull or the Log-Normal distribution. As expected from our statistical
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Trace V A M S Failure model
lanl05 L H H H Long-tailed/Long-tailed
g5k06 M M H M Long-tailed/Long-tailed
microsoft99 M M L H Short-tailed/Heavy-tailed
websites02 H H M L Long-tailed/Long-tailed
pl05 L M H L Long-tailed/Long-tailed
ldns04 L H L H Long-tailed/Short-tailed
overnet03 H L L H Short-tailed/Heavy-tailed
nd07cpu H M M L Heavy-tailed/Long-tailed
skype06 H L L H Short-tailed/Short-tailed

Table 7. Qualitative comparison of nine data sets in the FTA. H:High, M:Medium, L:Low. For V, A, M,
and S, see Table 8 and associated text.

Parameter Parameter Parameter Level Parameter
observation name Low High unit
Node-level V : Volatility V < 50 V > 100 hour
Node-level A: Availability A < 60 A > 90 %

System-level M : Measurement M < 6 M > 12 month
System-level S: Scale S < 1 S > 2 103 nodes

Table 8. Parameters in the qualitative comparison (see text).

analysis, the failure model tends to be a long-tailed distribution. However, several data sets, such as
g5k06 and pl05, show imperfect fits for the unavailability distribution. A possible explanation is the
relation of the model with the system architecture. For example, the g5k06 platform has 15 clusters in
9 geographically distributed sites, and each cluster could have its own separate model, as proposed by
Iosup et al. [5]. Moreover, as mentioned before, we need distributions with more degrees of freedom
such as the hyper-exponential to model the unavailability distributions.

We conclude our study towards a failure model for distributed systems with a summary of parameter
values obtained for various distributions, when fit to empirical data. Table 6 summarizes these values for
the availability and unavailability intervals of all data sets under study. For the availability distributions,
we analyze the hazard rate, i.e., the probability of the next failure with respect to time from the last
failure. For the data sets for which the Weibull or Gamma distributions are a good fit, the hazard rate is
decreasing. Recall that for such distributions if the shape parameter is less than one, i.e., k < 1, then
we have a decreasing hazard rate. That means that if the systems do not have any failure for a long time
(longer availability duration) the probability of a failure occurring in the near future decreases. In other
words, a decreasing hazard rate can be interpreted as more stability of resources over time. The only
hazard rate that is alarming is with overnet03, where the shape parameter is close to one.

4.3. Qualitative Comparison of Failure Characteristics in Distributed Systems

In this section we create a qualitative comparison of failure characteristics in distributed systems. We
approach this comparison through a conceptual framework in which each dataset in the FTA can be
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characterized through various qualitative parameters, then compared qualitatively with other datasets.
The main benefit of this comparison is making the selection of traces easier for the non-expert user. The
qualitative comparison is summarized in Table 7; the meaning of the values is explained in the following.

Our comparison framework uses four parameters, two based on data collected at node-level, and two
based on data collected at system-level. The volatility (V ) is dependent on the failure rate of each
node in the system. The availability (A) is the percentage of time that a node is working properly.
The measurement duration (M ) and scale (S) are the duration of measurement and scale of the entire
system, respectively. For each item we assign three different levels as described in Table 8. For the
qualitative comparison, we also look at the types of models that fit well the availability and unavailability.
Specifically, for each trace we use the tail behavior of its availability and unavailability distributions.

For the failure model, we have observed in Section 4.2 that all best-fits are long-tailed distributions.
However, for the qualitative comparison we have applied another classification, one which is based on
the p-values of the KS and AD tests with a significance level of 0.05. Specifically, if a data set has
acceptable p-values for Pareto or Exponential distribution, the failure model would be heavy-tailed or
short-tailed, respectively. Otherwise, the failure model could be classified as long-tailed (for more details
about tail behavior, see [66]).

5. Differences of Interpretation

To emphasize the critical need for public data and analysis methods, we give three examples of where
differences of trace interpretation result in differences in the derived failure models. In particular, we
show that differences of interpretation can change significantly the distribution of failures in terms of
passing statistical goodness-of-fit tests and the fitted distributions. Overall, we show significant differ-
ences for both empirical and fitted distribution. This emphasizes the need for public data sets and for a
general framework for data interpretation, expressed in methods and tools.

We choose three data sets, namely lanl05, g5k06, and nd07cpu, where the time of failures can be
interpreted differently. On close examination of the lanl05 trace, we found that there are overlapping
unavailability intervals. This overlapping of intervals was especially evident in System 16 of this trace,
which is a cluster of 16 NUMA-based nodes, each of which has 128 processors and 4 NICs.

In some cases, one failure interval completely subsumed another. In other cases, the start time of a
failure interval A was greater than the start time of another interval B but less than the stop time of
interval B. Moreover, the stop time of A was greater than the stop time B. We believe these intervals
might be the result of human error, as the data was manually recorded.

The authors that first described this data set [3] did not detail the cause of these intervals nor how
or why these intervals were interpreted in a certain way. Comparing our statistics of the failures with
those previously reported by Schroeder and Gibson [3], we “reversed engineered” the interpretation,
and found that the authors used the union of failures intervals having ambiguity. For comparison, we
interpret the failure intervals in System 16 differently and optimistically using their intersection, calling
the resulting post-processed data set lanl0516B.

We also found different possible interpretations for the g5k06 trace. In the raw trace, the states of
nodes are given as available, unavailable, suspected, or dead. Suspected is a state (as-
signed mostly automatically) in which a node does not behave well according to OAR, the Grid’5000
node manager. The "bad" behavior is detected through many tools, such as the node monitor finaud, the
jobs monitor sarko, and the internal OAR state manager NodeChangeState. Pessimistic trace processing
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would interpret the suspected state as a failure, and assume unavailability. An optimistic trace pro-
cessing would interpret the suspected state as a fault but not a failure, and assume availability. The
former interpretation is used in the g5k06 trace described in previous sections and by Iosup et al. [5].
We denote the latter interpretation as g5k06B.

The nd07cpu trace is the third data set for which we draw attention about various possible inter-
pretations. The trace is comprised of host idle times and CPU loads. Defined by Rood and Lewis [6],
CPUs are available when the host is idle without any user for more than 15 minutes and the CPU load
(which could be independent of the user) is less than 50%. We relaxed this condition to lengthen the
CPU availability time by including the time when a user is present (which, in turn, would cause zero
idle time) and the CPU load is less than 10%. This is a reasonable definition of CPU availability, as a
guest job could still run on the host without interfering significantly with local jobs. The data set with
this latter interpretation is referred to as nd07cpuB.

In the following, we present the analysis of different failure interpretations for the aforementioned
data sets. First, we compare the empirical distributions graphically. Second, we fit several distributions
to each of the data sets, and compare the fitted distributions for each pair of data sets. We compare the
fitted distributions statistically with p-values, and then graphically with qq-plots.

5.1. Differences of Empirical Distributions

We now investigate the statistical properties of availability and unavailability intervals, under different
assumptions. Overall, we find that the impact of different interpretations is significant. Specifically, we
find that a different interpretation can lead to increase, decrease, or no change in the characteristics of
either availability and unavailability intervals. Moreover, we find that the characteristics of availability
and unavailability intervals can change independently of each other, e.g., one can increase while the
other can decrease.

Figure 4 shows the quantiles of the empirical distributions for each pair of data sets. If the two data
sets have the same distribution, their qq-plot will match the line y = x, which is plotted in solid red
as a reference. We only show representative results: qq-plots for g5k06’s availability, lanl0516’s
unavailability, and nd07cpu’s availability.

For g5k06 (Figure 4(a)), g5k06B has longer availability intervals; it also has shorter unavailability
intervals (not depicted here). This is due to the optimistic interpretation of the suspected state. The
deviation is greatest at the quantile at 1000 hours of g5k06B, which corresponds to the the quantile
of 600 hours of g5k06. Also, the mean availability in g5k06B was increased by a factor of 1.50 (!)
because of the difference of interpretation. The mean unavailability in g5k06B was decreased by a
factor of 1.13 due to the decrease in the number of failures.

For lanl0516, we have observed little differences of interpretation for availability. This is due to
System 16 being highly available over a long period of time, which means that changes in unavailabil-
ity periods may not also be reflected in availability periods. However, there are clear differences in
the distribution of unavailability, as shown in Figure 4(b). Specifically, the unavailability intervals for
lanl0516B are statistically much shorter than for lanl0516.

For nd07cpu, we find that nd07cpuB has statistically longer availability and unavailability in-
tervals than nd07cpu. In particular, the mean lengths of availability and unavailability intervals have
increased by a factor of 1.47 and 1.35, respectively. While the total amount of unavailability decreased in
nd07cpuB, small unavailability intervals were interpreted as availability intervals, after the optimistic
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(a) g5k06, availability (b) lanl0516, unavailability (c) nd07cpu, availability

Figure 4. Quantile-Quantile plots of empirical data for ambiguous data sets.

processing of the traces. Thus, both the mean lengths of availability and unavailability were increased.

5.2. Differences of Fitted Distributions

We now show how the differences of interpretation affect the statistical goodness-of-fit tests of fitted
distribution and their fitted parameters. Overall, similarly to Section 5.1 we find that the impact of
different interpretations is significant.

Typically, a significance value of 0.05 or 0.10 is used as a threshold for p-values to determine whether
to reject the NULL hypothesis that the fitted distribution represents the empirical. We found several
cases where the p-values for different interpretations would result in conflicting conclusions, i.e., re-
jection for one interpretation and and failure of rejection for another. For example, the AD-test for the
Weibull distribution fitted to g5k06’s unavailability intervals resulted in a p-value of 0.07, whereas the
p-value corresponding to g5k06B was 0.035. Similarly, for the AD test for the Log-Normal distribution
the p-value is 0.148 for g5k06 versus 0.057 for g5k06B. Thus, for a significance level of 0.05, we find
that the Weibull distribution would not be rejected as a good fit for g5k06’s unavailability distribution,
but would be rejected g5k06B’s unavailability distribution. For a threshold of 0.10, the Log-Normal
distribution would not be rejected for g5k06, but would be rejected for g6k06B’s unavailability distri-
bution.

We found similar cases for lanl0516 and lanl0516B, and for nd07cpu and nd07cpuB. For
lanl0516, the Gamma distribution is rejected for lanl0516’s unavailability intervals but not re-
jected for lanl0516B according to the p-values resulting from the KS test (0.046 versus 0.056). For
nd07cpu, the Log-Normal distribution is rejected for nd07cpuB’s unavailability intervals, but not
rejected for nd07cpu according to the p-value for the KS test (0.14 versus 0.01).

In addition to quantitative contradictions, we also depict contradictions graphically, in Figure 5. We
plot the quantiles for the fitted Gamma distributions of pairs of data sets. We choose the Gamma distri-
bution as it is analytically easy to use and has a relatively high p-value.

Figure 5 depicts qq-plots of the Gamma distributions for g5k06’s availability, lanl0516’s unavail-
ability, and nd07cpu availability distributions. We observe from the qq-plots that the distributions fitted
to different interpretations of the same data set are significantly different. For example, for lanl0516,
we see that the quantile of 40 hours for lanl0516B corresponds to the quantile of 180 hours for
lanl516.

Furthermore, the impact on the distribution parameters is significant as shown in Table 9. Significant
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(a) g5k06, availability (b) lanl0516, unavailability (c) nd07cpu, availability

Figure 5. Quantile-Quantile plots of fitted distributions for ambiguous data sets.

System Exp(µ) Wbl(k, λ) LogN(µ, σ) Gam(k, λ) Exp(µ) Wbl(k, λ) LogN(µ, σ) Gam(k, λ)
g5k06 32.41 0.48 14.37 1.51 2.42 0.34 94.35 7.41 0.35 0.47 -2.00 2.20 0.19 39.92

g5k06B 48.61 0.52 22.66 2.08 2.21 0.37 131.78 6.54 0.35 0.31 -2.36 2.07 0.18 37.00
lanl05 1779.99 0.48 816.60 5.56 2.39 0.35 5102.71 5.92 0.58 2.18 0.05 1.42 0.38 15.44

lanl05B 1774.21 0.48 812.98 5.55 2.39 0.35 5087.60 5.06 0.59 2.12 0.03 1.40 0.41 12.28
nd07cpu 13.73 0.45 4.16 0.30 2.20 0.30 46.16 4.25 0.51 0.74 -1.02 1.27 0.28 15.07

nd07cpuB 20.12 0.48 7.21 0.91 2.07 0.33 61.74 5.75 0.49 0.83 -0.91 1.21 0.26 21.72

Table 9. Parameters of distributions for availability (left) and unavailability (right) for ambiguous data
sets (mean: µ, std: σ, shape: k, scale: λ). A grey box indicates a significant difference of parameters
between data sets.

differences in parameters are highlighted in grey. For example, the mean of the exponential distribution
for g5k06B’s availability is a factor of 1.50 times greater than g5k06. Moreover, different interpreta-
tions can significantly affect the scale parameter of the Gamma. For example, the scale parameter of the
gamma distribution for g5k06B’s availability is factor of 1.39 times greater than g5k06.

6. Performance Evaluation

In this section, we evaluate the effect of different trace interpretation on the job scheduling for two
different systems. We use the FTA simulator based on GridSim [34] to simulate the considered case
studies.

6.1. Metrics

The performance metrics that we consider in all simulation scenarios are the Average Weighted Re-
sponse Time (AWRT) [67] and the Bounded Slowdown (BS) [68]. The AWRT for N given jobs is
defined by:

AWRT =

∑N
j=1 dj · vj · (cj − sj)∑N

j=1 dj · vj
, (1)
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Table 10. Input parameters for the workload model.
Input Parameters Distribution/Value
Inter-arrival time Weibull (α = 23.375, 0.2 ≤ β ≤ 0.3)

No. of nodes Loguniform (l = 0.8,m, h, q = 0.9)
Job duration Lognormal (µ = 4.5, σ = 2.0)

Pone 0.024
Ppow2 0.788

where vj is the number of nodes used by job j, cj is the time of completion of the job, and sj is its
submission time. The resource consumption dj · vj of a job j is used as its weight in the denominator.
AWRT measures the average time that users must wait to have their jobs completed weighted by the
weights of the jobs. The BS for a set of N jobs is defined as follows:

BS =
1

N

N∑
j=1

Wj +max(dj, b)

max(dj, b)
, (2)

where Wj is the waiting time of job j and b is a lower bound on the runtimes of jobs that is used to
eliminate the effect of very short jobs [68]. We set b to 10 seconds.

6.2. Experimental Setup

The workload model for evaluation scenarios is obtained from the Grid Workload Archive [13]. We
use the parallel job model of the DAS-2 multi-cluster Grid [69]. Based on the workload characterization,
the inter-arrival time, the job size, and the job duration follow Weibull, two-stage Loguniform, and
Lognormal distributions, respectively. These distributions with their parameters are listed in Table 10. It
should be noted that the number of nodes in the job can be scaled to the system size (e.g., M nodes) by
setting h = log2M . Based on the workload model, Pone and Ppow2 are the probabilities of occurrence in
the workload of jobs that run on one node and of jobs that run on a number of nodes that is a power of
two, respectively. In order to generate different synthetic workloads, we modify the second parameter
of the Weibull distribution (the shape parameter β) as shown in Table 10 to change the inter-arrival time
of the jobs.

The failure traces for the experiments are g5k06 and lanl05. We use the failure trace of a cluster in
Grid’5000 with 64 nodes (i.e., Cluster number 2) as well as the system number 16 from the LANL system
with 16 nodes and 128 processors. The characteristics of the failure traces are listed in Table 11. For
each failure trace, we use the same interpretations as explained in Section 5. As one can see, the average
availability of g5k06C2B is significantly increased where the average unavailability slightly increased.
In contrast, the average unavailability of lanl0516B is decreased where the average availability is
marginal increased.

We configure the simulator so that it simulates systems similar to the ones on which the traces were
collected, and we use selective backfilling [70] as the job scheduler. Selective backfilling grants a reser-
vation to a job when its expected slowdown exceeds a threshold, i.e., when the job has waited long
enough in the queue. The expected slowdown of a given job, sometimes also called its eXpansion Fac-
tor (XF), is defined as XF = (Wi + Ti)/Ti, where Wi and Ti are the waiting time and the run time
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Table 11. Characteristics of the failure traces used in the experiments.

Traces No. of events Avg. events/node Avg. availability (hrs) Avg. unavailability (hrs)
g5k06C2 50924 795 22.256 10.223
g5k06C2B 33310 520 37.699 11.948
lanl0516 5092 318 228.806 9.328
lanl0516B 5208 325 229.846 3.006

of job i, respectively. We use the Selective-Differential-Adaptive scheme proposed in [70], which sets
the threshold for XF to be the average slowdown of previously completed jobs. It has been shown that
selective backfilling outperforms other types of backfilling algorithms [70], which is the reason why we
use it in our experimentats.

After submitting a job to the scheduler, each job runs on nodes that are available. In case of resource
(node) failure during the execution of a job, we assume perfect checkpointing so that the job is started
from where it left off when the node becomes available again. Checkpointing issues are beyond the
scope of this paper, and we refer interested readers to [71] to see how checkpoint overheads and periods
can be computed bases on the associated failure model.

For each simulation experiment, we gathered statistics for a two-month period of the DAS-2 work-
loads. The first week of workloads during the warm-up phase were ignored to avoid bias before the
system reache steady state. For the experiments, each data point is the average of 50 simulation rounds
including several jobs vary from 3,000 to 25,000 (depends on the workload parameters). In our experi-
ments, the results of simulations are accurate within a confidence level of 95%.

6.3. Results and Discussion

In Figure 6 we show the simulation results in terms of AWRT and slowdown versus the arrival rate
for two traces of g5k06. As can be seen, the response time and slowdown for the g5k06C2B trace
is much lower than for the g5k06C2. The main reason for this is the higher average availability of
g5k06C2B as illustrated in Table 11. The same results for the lanl05 traces are plotted in Figure 7.
While the AWRT of the lanl0516B trace is a bit higher than that of lanl0516, the slowdown shows
no obvious difference for the two traces. One possible reason is the high availability of both lanl05
traces (see Table 11).

To be more pricese in terms of comparing two interpretations of a failure trace, we also consider the
Cumulative Distribution Function (CDF) of the job response time for both the g5k06 and lanl05
traces under a moderated workload. As one can see in Figure 8(a), the response time for g5k06C2 is
higher than that for g5k06C2B, similar to Figure 6. However, Figure 8(b) shows that in contrast to what
we observe in Figure 7, the job response time with lanl0516B is lower than with lanl0516. This
reveals that using average values can not always provide an accurate reflection of system performance
in the presence of resource failures. In our case, since the difference of the two g5k06 traces in terms
of availability is really considerable, the AWRT and slowdown metric can show the difference of the
system performance. However, both lanl05 traces have very close availability and the only difference
is the lower unavailability in lanl0516B. In this case, the CDF is much more informative than the
average metrics.
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(a) AWRT (b) Slowdown

Figure 6. The AWRT and the slowdown versus the arrival rate for two traces of g5k06.

(a) AWRT (b) Slowdown

Figure 7. The AWRT and the slowdown versus the arrival rate for two traces of lanl05.
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The last but not least, making both trace data and analytical methods publicly available is critical
to apply the failure traces in the research and development of reliability algorithms for parallel and
distributed systems.

(a) g5k06C2 (β = 0.25) (b) lanl0516 (β = 0.225)

Figure 8. The cumulative distribution functions of the job response time for two traces under a mod-
erated load.

7. Related Work

In this section we compare our work with related work: other public-access archives and previous
works on statistical modeling.

Differences between the FTA and other public-access archives: The FTA extends previous work in
public-access archives in three main ways. First, the FTA defines a comprehensive unified format that
facilitates use and comparison of the traces. In particular, the FTA data format can accommodate various
types of components and of events. None of the archives we survey in this section can accommodate
information from all the distributed system types investigated in this work. Second, the FTA already
hosts a much broader and deeper collection than all the public-access archives we survey here. The FTA
contains over 20 data sets, covers 8 classes of distributed systems and representing over 10 application
domains, and spans with its failure traces over 20 operational years. Moreover, the FTA also shares raw
(!) data and various scripts for data parsing. Third, the FTA provides a public toolbox for failure trace
analysis. None of the other archives we survey in this section provides such a toolbox; although such a
toolbox is needed to reduce the interpretation differences when using different data acquisition processes
(see also Sections 5 and 6), none of the other archives provides a comprehensive toolbox.

Open-access archives for failure data: The Computer Failure Data Repository [15] provides failure
traces for supercomputers and clusters used for one application domain, HPC. However, no standard
format is defined, and only raw data is shared. The Repository of Availability Traces [14] contains
traces for 5 distributed systems in a common format, and scripts used for parsing the raw data. While a
standard format is defined, we believe this format excludes critical information for capturing a range of
failure types and systems. For example, the format does not contain the failure cause, the creator, and the
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component type. The Desktop Grid Trace Archive [4] is focused specifically on one type of distributed
systems, desktop grids; moreover, a generic failure format is not provided. The Grid Observatory [72]
provides numerous data sets, some of which could provide failure information. However, the repository
is currently limited to a single system (i.e., EGEE) and only provides raw data. The Observatory does
not provide a common data format, or scripts for parsing and analysis.

Other open-access archives for distributed systems, but without failure data: There are several trace
archives that provides workload dataset of parallel and distributed systems. The Parallel Workloads
Archive [12] includes many workload traces of supercomputers and parallel machines. The Grid Work-
loads Archive [13] provides workload traces of clusters and grids. The P2P Trace Archive [73] shares
many workload and operational traces collected from peer-to-peer systems. The Game Trace Archive [74]
publishes operational and other traces representative to distributed systems supporting online gaming,
typically massively multiplayer. Although all these archives have their own trace format, they do not
focus on job, service, or resource failures.

Differences between this study and previous work on statistical modeling of failures in distributed
systems: Overall, our work presents the first uniform and comprehensive statistical analysis and com-
parison of the failure characteristics for different types of distributed systems. Most previous studies,
in particular [2, 36, 37, 38, 39], do not focus on modelling issues. A few other studies [3, 5] have also
conducted modelling of various failure characteristics. However, this body of previous modelling work
focuses on a particular system type or even on a single data set, and so the generality of the model for
distributed systems was not yet confirmed.

In the study of Bakkaloglu et al. [35], the entity being modeled is different than ours. Bakkaloglu et
al. model the number of machines available at some time point, considering correlated failures, in the
context of a distributed storage system. In contrast, our study focuses on the the continuous durations of
availability and failures. This latter characteristic is essential for stochastic scheduling algorithms that
conduct task assignment based on the probability of task completion.

8. Conclusion

Despite the importance and impact of failures in (large-scale) distributed computing environments,
few traces collected from real environments that contain information on failures are publicly available.
To address this situation, which restricts the applicability of failure models and the development of
failure-aware systems, our contribution in this work is threefold:

1. We have created the Failure Trace Archive for facilitating the comparative analysis of failures in
distributed and parallel systems. We defined a standard trace format, and showed its suitability by
converting traces of nine diverse distributed systems into this format. Given traces in this format,
we implemented a toolbox and a simulator that facilitates the comparison of failure statistics, mod-
els, and algorithms. Ultimately, we envision that scientists would use the toolbox as a repository
of modeling and predictive methods.

2. Using the toolbox, we gave a uniform and global statistical analysis of failure in nine distributed
systems. One key finding was that the Weibull, the Lognormal, and the Gamma distributions are
often the best candidates for availability and unavailability distributions. Moreover, the hazard rate
with respect to the Weibull distribution was decreasing in all systems. In some cases, the measure-
ment method (in particular the resolution of probing) seemed to cause bias in the distribution of
availability, and we identified these data sets with potential bias.
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3. Finally, we have shown how differences of interpretation of trace data sets can result in signifi-
cantly different failure models and statistics. Moreover, we observed that differences of interpre-
tation have a major impact on the scheduling of jobs in the presence of resource failures. This
shows that it is critical to make both trace data and analytical methods publicly available.

As future research, we intend to discover the relationship between lower-level failures (for example, of
nodes or components) and higher-level failures (for example, of jobs) in large-scale distributed systems.

9. Availability of FTA Data and Scripts

The Failure Trace Archive, including technical documentation on the data format, the toolbox. and
the trace data sets are available online at: http://fta.scem.uws.edu.au.
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